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SUMMARY 
 
Biomonitoring of exposure to the insecticide permethrin is usually performed by analysis of 
its urinary metabolite 3-phenoxybenzoic acid (3-PBA). However, chronic low-level exposures 
and cumulative exposures cannot be assessed by analyzing urinary biomarkers. We are 
engaged in the development of a methodology to assess the cumulative internal dose of 
exposure to permethrin, which is based on the assumption that (reactive) glucuronide 
conjugates of the major permethrin metabolites 3-PBA and cis/trans-3-(2,2-dichlorovinyl)-
2,2-dimethylcyclopropane-1-carboxylic acid (cis/trans-Cl2CA) will form persistent adducts to 
proteins, in analogy with the glucuronide conjugates of structurally related drugs. In the 
second year of the project the adduct formation of the glucuronides of 3-PBA and Cl2CA was 
studied in plasma. After pronase digestion of albumin isolated from exposed human plasma, 
various lysine derivatives resulted with favourable mass spectrometric and chromatographic 
properties. A mass spectrometric method was developed for analysis of these lysine adducts, 
and synthetic reference standards have been prepared. In case of 3-PBA glucuronide, protein 
binding was provisionally quantitated by using [14C] labelled 3-PBA glucuronide, which was 
obtained by enzymatic synthesis. The binding studies were thwarted by non-covalent 
association of the glucuronides to the proteins; in the third year of the agreement more 
attention will be paid to this issue. It is envisaged that the obtained results can form a firm 
basis for development of a protein adduct-based methodology for biomonitoring of exposure 
to permethrin. Furthermore, the results will give valuable toxicological information that can 
be used for risk assessment for the large-scale use of permethrin. 
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I INTRODUCTION 
The pyrethroid permethrin is one of the most widely used insecticides. It is effective in the 
control of ticks, mites and lice, while having little adverse effects in humans. Its toxicity in 
insects, and in humans, is based on binding to sodium channels in the nervous system, leading 
to prolongation of the depolarizing after-potential, repetitive after-discharges and 
hyperexcitation (Narahashi, 2002). Recently, it has been argued that voltage-sensitive calcium 
channels may also be targets of pyrethroid action (Shafer and Meyer, 2004). Permethrin has 
been used extensively by the allied troops in the Gulf War and in operation Iraqi Freedom, 
e.g., by impregnating it into battle dress uniforms and bed nettings. In this way permethrin 
can be absorbed through the skin, while oral and respiratory exposure can also occur. 
Probably, soldiers can be exposed to rather high doses of permethrin by migration of the 
compound from clothing to the skin surface (see, e.g., Snodgrass, 1992). Although permethrin 
is generally considered as a rather safe compound, a number of adverse effects have been 
reported. Occupationally exposed people have been reported to experience facial skin 
sensations. Symptoms of acute poisonings include dizziness, headache, nausea, anorexia, and 
fatigue. In case of heavy exposures, muscle fasciculation and altered consciousness have been 
reported (He et al, 1989; Aldridge, 1990). It has been shown in animal experiments that 
combined exposure to (high dosages) of permethrin, DEET and pyridostigmine bromide 
resulted in enhanced neurotoxicity, increased mortality, increased oxidative stress, and 
behavioral alterations (Abou-Donia et al., 1996; Abu-Qare and Abou-Donia, 2000a, 2001; 
Abdel-Rahman et al, 2004; for a review see Abu-Quare and Abou-Donia, 2003). On the basis 
thereof it was postulated that such combined exposures might have contributed to the etiology 
of the so-called Gulf War Illness. Therefore, careful biomonitoring of exposure to permethrin 
is important for the military community. 
The metabolism of permethrin has been investigated in several species (Huckle et al, 1981). 
The major metabolites are cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-
carboxylic acid (cis/trans Cl2CA) and 3-phenoxybenzoic acid (3-PBA; see e.g., Tyler et al., 
2000; Hardt & Angerer, 2003). The latter metabolite is formed in two phases (see Figure 1). 
First, esterase-mediated cleavage of the parent compound will give 3-phenoxybenzyl alcohol, 
while in the second phase this compound is oxidized enzymatically (Bast and Kampffmeyer, 
1998; Heder et al, 2001) to 3-PBA. The 4’-hydroxy derivative of 3-PBA has been identified 
as the major metabolite of permethrin in the rat (Angerer and Ritter, 1997). Subsequently, 
phase II metabolism will give the respective conjugates, mostly glucuronides, which facilitate 
the excretion process. 
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Figure 1.  Metabolism of permethrin in mammals  
 
Biomonitoring of exposure to permethrin is usually performed by analysis of its urinary 
metabolite 3-PBA, after acidic hydrolysis of its glucuronide (see, e.g., Hardt and Angerer, 
2003; Leng et al., 2003 Abu-Qare and Abou-Donia, 2000b; Baker et al, 2004), albeit that 
conjugates of cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid are 
excreted into human urine in similar quantities as the PBA derivatives (Hardt and Angerer, 
2003). Studies with a volunteer who had been exposed (orally) to the closely related 
pyrethroid cyfluthrin revealed that most (93%) of the urinary metabolites are excreted within 
24 h (Leng et al., 1997). Consequently, urine samples for biomonitoring purposes should be 
taken within the first 24 h after exposure. It follows that chronic low-level exposures and 
cumulative doses can not be assessed by analyzing the urinary biomarkers. This observation 
constitutes an evident research gap. 
 
In the current study we explore the feasibility of biomonitoring of exposure to permethrin 
based on the determination of long-lived protein adducts derived from metabolites of 
permethrin. In the first annual report we reported that the 3-PBA and Cl2CA glucuronide 
metabolites of permethrin could be chemically synthesized. The reactivity of these 
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metabolites with various amino acids, peptides and albumin was also studied; various distinct 
adducts could be identified by LC tandem mass spectrometry. 
In the present report we describe the interactions of 3-PBA- and Cl2CA-glucuronide with 
plasma proteins and the preparation of radiochemically labelled 3-PBA-glucuronide for 
quantitation of protein binding. Furthermore, a method was developed for isolation and mass 
spectrometric analysis of adducts of the glucuronides to lysine residues in proteins. 
            
 
Statement of work 
 
The work described here is focused on the development of methods for biomonitoring 
exposure to permethrin, which are based on long-lived adduct with proteins. This will enable 
biomonitoring of chronic, low-level exposures to this compound. In order to develop such 
methods: 
 
1. It will be assessed whether the potentially reactive permethrin metabolites 3-
phenoxybenzoic acid glucuronide (3-PBA glucuronide) and cis/trans-3-(2,2-dichlorovinyl)-
2,2-dimethylcyclopropane-1-carboxylic acid glucuronide (cis/trans-Cl2CA glucuronide) can 
form adducts with proteins in human plasma. 
 
2. A sensitive liquid chromatography tandem mass spectrometry procedure will be developed 
for the most suitable/abundant adduct with albumin, after enzymatic digestion. 
 
3. The in vivo formation of the adduct will be further evaluated in laboratory animals. It will 
also be evaluated whether the adduct can be analyzed in plasma samples of US soldiers who 
have used permethrin extensively during deployment. 
 
Time schedule 
Year 1: 1 
Year 2: 2 
Year 3: 3 
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II  MATERIALS AND INSTRUMENTATION 
 
II.1 Materials 
The following commercially available products were used: 
3-Phenoxybenzoic acid (Fluka, Zwijndrecht, The Netherlands); Cl2CA (Specs Research 
Laboratory, Delft, The Netherlands). Acetonitrile (Baker Chemicals, Deventer, The 
Netherlands); pronase Type XIV from Streptomyces Griseus (E.C. 3.4.24.31) (Sigma Chemical 
Co., St. Louis, MO, U.S.A.); benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium 
hexafluorophosphate (PyBOP) and Fmoc-amino acids (Novabiochem); trifluoroacetic acid, 
trypsin (Aldrich, Brussels, Belgium). 
Slyde-A-Lyzer cassettes were obtained from Pierce. Centrex UF-2 10 kDa filters were 
obtained from Schleicher & Schuell (Dassel, Germany). Ultrafree (100 kD molecular weight 
cut-off; 15 ml) centrifugal ultrafilters were obtained from Millipore (Bedford, MA). Albumin 
affinity chromatography was carried out on HiTrap Blue HP columns (1 ml; Amersham 
Biosciences, Uppsala, Sweden). Desalting of albumin fractions was carried out on PD-10 
columns containing Sephadex G-25 (Amersham Biosciences, Uppsala, Sweden). 
 
II.2 Instrumentation/devices 
Liquid chromatography experiments were run on an ǺKTA explorer chromatography system 
(Amersham Pharmacia, Uppsala, Sweden). Columns used were a Pep RPC 5/5 column 
(Pharmacia, Uppsala, Sweden), a Zorbax SB C-18 column (4.6 mm x 150mm; 5 µm, Zorbax, 
Mac-Mod Analytical, Chadds Ford, PA, USA) and a Source 15 RPC column (Amersham 
Pharmacia, Uppsala, Sweden). 
 
LC/electrospray tandem mass spectrometric analyses for obtaining structural information 
were conducted on a Q-TOF hybrid instrument equipped with a standard Z-spray electrospray 
interface (Micromass, Altrincham, UK) and an Alliance, type 2690 liquid chromatograph 
(Waters, Milford, MA, USA). The chromatographic hardware consisted of a pre-column 
splitter (type Acurate; LC Packings, Amsterdam, The Netherlands), a sixport valve (Valco, 
Schenkon, Switzerland) with a 10 or 50 µl injection loop mounted and a PepMap C18 (LC 
Packings) or Vydac C18 column (both 15 cm x 300 µm I.D., 3 µm particles). A gradient of 
eluents A (H2O with 0.2% (v/v) formic acid) and B (acetonitrile with 0.2% (v/v) formic acid) 
was used to achieve separation. The flow delivered by the liquid chromatograph was split pre-
column to allow a flow of approximately 6 µl/min through the column and into the 
electrospray MS interface. MS/MS product ion spectra were recorded using a cone voltage 
between 25 and 40 V and a collision energy between 30 and 35 eV, with argon as the 
collision gas (at an indicated pressure of 10-4 mBar). 
 
Other mass spectrometric analyses were carried out on a TSQ Quantum Ultra mass 
spectrometer (Finnigan, Thermo Electron Corporations, San Jose, USA) equipped with an 
Acquity Sample Manager and Binary Solvent Manager (Waters, Milford, USA). For LC-MS 
experiments, the liquid chromatograph was connected to the mass spectrometer source via the 
Sample Manager equipped with a 10 µl loop and an Acquity BEH C18 column (1.7 µ 
particles, 1 x 100 mm; Waters, Milford, USA). The liquid chromatography system was run 
with a 25 minute linear gradient from 100% A to A/B 55.5/45.5 v/v (A: 0.2% formic acid in 
water; B: 0.2% formic acid in acetonitrile) at a flow rate of 0.09 ml/min. The TSQ Quantum 
Ultra mass spectrometer was operated with a spray voltage of 3 kV, a source CID of 0 V, a 
sheath gas pressure of 41 A.U., aux gas pressure of 2 A.U. and a capillary temperature of 350 
ºC. Positive electrospray product ion spectra were recorded at an indicated collision energy of 
15-20 eV, using argon as the collision gas at a pressure of 1.5 mTorr. Negative electrospray 
product ion SRM data was recorded at an indicated collision energy of 15-20eV.  
 

1H-NMR spectra were recorded on a Varian (Palo Alto, CA, U.S.A.) VXR 400S spectrometer 
operating at 400.0 MHz respectively. Chemical shifts are given in ppm relative to tetramethyl 
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silane. The solvent signals at 2.525 ppm (residual Me2SO-d5 in Me2SO-d6) or 7.260 ppm 
(residual CHCl3 in CDCl3) served as a reference.  
 
Radio-HPLC analyses were performed using a series 200 HPLC pump, UV/Vis detector and 
Radiomatic 625 TR Flow scintillation Analyzer (all by Perkin Elmer, Shelton, CT). 
 
Radioactivity was counted using a tri-Carb 2900 TR liquid scintillation analyzer (Packard 
Instrument Co., Downers Grove, Il). Liquid Scintillation Cocktail used was Hionic Fluor (PE, 
Shelton, CT). 
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III EXPERIMENTAL PROCEDURES 
 
 
Incubations of plasma with 3-PBA glucuronide and Cl2CA glucuronide; isolation of 
albumin 
To 0.5 ml of human plasma was added 5 µl of a solution of 3-PBA glucuronide in various  
concentrations (end concentrations in plasma: 0.5 mM, 0.05 mM, 0.005 mM and 0 mM as a 
control). After incubation for 2h at 37ºC, 2 ml of buffer A (50 mM KH2PO4, pH 7.0) was 
added. The solutions were filtered through 45 µm acrodisc filters and albumin was isolated 
over a HiTrap Blue HP affinity column. This column was equilibrated with 10 ml A buffer, 
followed by application of the sample. The impurities were removed by flushing the column 
with 10 ml A buffer, followed by elution of the albumin with 3 ml B buffer (50 mM KH2PO4 

+ 1.5M KCl, pH 7.0). Between the samples the column was consecutively flushed with 5 ml 
B-buffer and 20 ml A-Buffer. Subsequently, the purified albumin samples were desalted over 
a PD-10 desalting column, which had been equilibrated with 25 ml NH4HCO3 solution 
(50mM). After applying the samples, the columns were eluted with 3 ml NH4HCO3. These 
albumin solutions were used for enzymatic digestion.  
 
Pronase digestion  
To 750 µl of the albumin solution was added 100 µl of pronase solution (10 mg/ml 50 mM 
NH4HCO3). This mixture was incubated for 2 h at 37ºC and filtered over a 10kD filter before 
analysis with LC-MS(/MS).  
 
Trypsin digestion  
An aliquot (0.5 ml) of the albumin solution was lyophilized and dissolved in buffer (0.3 ml; 6 
M guanidine.HCl, 100 mM Tris, 1 mM EDTA, pH 8.3). To this solution was added 
dithiothreitol (5 mg) and the mixture was incubated for 40 min at 55ºC. Next, monoiodoacetic 
acid (10 mg) was added and the mixture was incubated for another 30 min at 40ºC. The 
solutions were transferred into a Slide-a-lyzer cassette and dialyzed overnight against 50 mM 
NH4HCO3. To the dialyzed albumin solution (+ 3 mg albumin) was added trypsin solution (30 
µl; 1 µg/µl in 50 mM NH4HCO3). This mixture was incubated for 4 h and filtered over a 10kD 
filter before analysis with LC-tandem MS. 
 
Synthesis of lysine adducts of 3-PBA and Cl2CA 
The synthesis was carried out on a PHB-S-TG resin (Rapp Polymere; 0.24 mmol/g resin) 
containing immobilized Boc-Lys(Fmoc) on a 36 µmol scale. The resin (150 mg) was swollen 
in DMF (3 ml) in a peptide synthesis tube for 45 min. Subsequently, the resin was treated 
with piperidine/DMF (8/2, v/v), 4*4 min, and washed with DMF (5x 2 ml). To the resin were 
added 3-PBA or Cl2CA (10 eq, in 1 ml of DMF), PyBOP (10 eq, in 1 ml of DMF), HOBT (10 
eq, in 1 ml of DMF) and DIPEA (20 eq). The synthesis tube was gently shaken every 15 min. 
After 2.5 h the resin was washed with DMF (5x 2 ml), dichloromethane (4x 0.2 ml), 
dichloromethane/diethyl ether (50/50, v/v; 4 x 0.2 ml) and diethylether (4x 0.2 ml), 
consecutively. The resin was air dried overnight. Deprotection and cleavage from the resin 
was carried out as follows. To the resin was added TFA/TIS (95/5, v/v; 6x 0.6 ml with 5 min 
interval). After the last addition, the liquid was pushed through the tube with a plunger. The 
cleaved lysine derivative was left for 2 h (after first addition) in the TFA/TIS solution. The 
solution was concentrated under a stream of nitrogen. To the concentrated compound was 
added diethyl ether/pentane (1/1, v/v; 10 ml), upon which a precipitate was formed. The 
precipitate was isolated by means of centrifugation and was washed with diethyl 
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ether/pentane (1/1, v/v; 10 ml). The solid material was air dried overnight, taken up in water 
(1 ml), and lyophilized. The compounds were analyzed by HPLC and LC-tandem MS and 
were considered to be pure enough (> 90%) for use as reference compounds. 
 
Enzymatic synthesis of β-glucuronides of 3-PBA and Cl2CA, followed by incubation with 
human plasma 
First, experiments were carried out in order to demonstrate that the glucuronides of 3-PBA 
and Cl2CA could be prepared in this way. Thus, to an Eppendorf tube containing 3-PBA (25.6 
µg), a solution (250 µL) of UDP-acetylglucosamine (1.2 mM) and UDP glucuronic acid (6 
mM) in Tris buffer (120 mM Tris; 1% DMSO; 6 mM MgCl2; pH 7.4), a suspension of 
microsomes (20 mg/ml in sucrose solution; 50 µl) was added.  The mixture was incubated for 
4 h at 37 ˚C. Subsequently, a mixture of TFA/CH3CN (4/96, v/v; 63 µl) was added in order to 
precipitate the proteins. The sample was centrifuged and the supernatant was analyzed by 
means of LC tandem MS, that demonstrated the presence of the desired glucuronide. In an 
analogous way, the β-glucuronide of Cl2CA was prepared and its identity was confirmed by 
MS. 
In case of exposure of human plasma to the glucuronides, the quenching step was omitted and 
the plasma (0.3 ml) was added directly to the glucuronidation mixture, after 4 h of incubation 
at 37 ºC. Albumin was isolated and digested with pronase as described above. 
 
Synthesis of meta-bromodiphenyl ether (to be used for synthesis of [14C] 3-PBA) 
 

OH Br

Br

O

Br

Cu, NaOH

12 15h
200

o
C

 
 
In a 50 ml 3-necked round bottom flask, equipped with a condenser, phenol (105 mmol) and 
NaOH (83 mmol) were stirred at 130-140 ºC (oil bath), until the NaOH had been dissolved. 
The reaction mixture was cooled to 100 ºC, and 8,4 mg copper powder was added. 1,3-
dibromobenzene (20 ml, 0,1654 mol) was added dropwise. The temperature of the reaction 
mixture was increased to 200 ºC. The course of the reaction was followed by TLC. After 15 h, 
the reaction had gone to completion, and the reaction mixture was worked up by vacuum 
distillation. Further purification was performed by silica gel column chromatography (eluent: 
dichloromethane / hexane; gradient: 0-8% dichloromethane in hexane). Yield: 3 g (16%). 
Purity according to GC-MS: 97.7 % 
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The device represented below was used for the multi-step synthesis of 3-PBA; all reagents 
were present in the manifold prior to the beginning of the experiment. 
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Figure 2. Manifold for preparation of [14C] 3-PBA 
 
 
Preparation of the Grignard reagent 
To flask E, containing magnesium (52 mg, 2 mmol) and a few crystals of iodine was added a 
solution of 3-bromodiphenylether (750 mg, 3 mmol) in diethyl ether (3 mL). The entire 
system was kept under nitrogen. 
The preparation of the Grignard reagent was initiated by applying heat using a heat gun. 
When the reaction started, the mixture was refluxed gently until all of the magnesium had 
disappeared. The content of the flask was frozen by using a bath of liquid nitrogen and the 
entire system was evacuated using a vacuum pump. 
 
Generation of CO2 
The following reaction occurred: 
 
BaCO3 (s) + H2SO4 (l)  BaSO4 (aq) + CO2 (g) + H2O (l) 
 
Vessel A was charged with sulfuric acid (8 mL) and the left part of the manifold was brought 
to vacuum. By using a heat gun, the sulfuric acid was heated, until no gas development was 
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visible anymore.  To flask B had already been added BaCO3 powder (165 mg, 0.84 mmol). 
The left part of the manifold was evacuated again, while condenser C was cooled with solid 
CO2/acetone and condenser D with liquid nitrogen. The connection between the vacuum 
pump and the manifold was closed and generation of CO2 was started by dropping a few 
drops of concentrated sulfuric acid onto the BaCO3 powder. After the first violent 
development of CO2, the remaining sulfuric acid was added in a few minutes and the 
remaining solution was stirred and heated with a heat gun. The generated CO2 was dried by 
passing through condenser C and condensed to a white solid in condenser D. Finally, the 
valve between condenser C and D was closed. 
 
Synthesis of 3-PBA 
The connection with the pump was closed and the valve between condenser D and the right 
part of the manifold was opened. Flask E was warmed up in a bath of acetone/CO2, while 
condenser D was allowed to warm up to room temperature allowing the solid CO2 to 
sublimate and condense in flask E. Reaction started between CO2 and the Grignard and the 
reaction was stirred for another 15 min at room temperature. 
Next, nitrogen was flushed through the system and water (1.5 mL) was added to the content 
of flask E, followed by concentrated HCl (12 M, 1.5 mL). Diethyl ether (5 mL) was added 
and the mixture was transferred to a separation funnel. The organic layer was extracted with 
water (2 x 5 mL) and evaporated to a small volume. 
A solution of NaOH (0.6 g/10 mL water) was added and the solution was extracted with 
CH2Cl2 (3 x 5 mL). The water layer was acidified using concentrated HCl (3 mL) and 
extracted again with CH2Cl2 (4 x 10 mL). The combined organic layer was dried (MgSO4) and 
concentrated. Yield 186 mg (0.87 mmol, 43 %). 
 
Synthesis of [14C] 3-PBA 
For the preparation of [14C] 3-PBA, almost the same protocol as described above was used. 
To flask B was added [14C]BaCO3 (165 mg, 5 mCi, 0.84 mmol; sp. act 6 mCi/mmol);  we used 
a larger excess 3-bromodiphenylether (4 mmol, 1 gram) and magnesium (3 mmol, 72 mg) 
than during the cold run, in order to give a maximum conversion of [14C] CO2. After stirring 
the Grignard reaction mixture for 15 min, acidifying took place with HCl (4 mL, 6 M), 
followed by a wash step with water ( 3 x 3 mL). The diethyl ether layer was evaporated to 
dryness and dissolved in CH2Cl2 (10 mL) and extracted with a solution of NaOH (600 mg in 
water (10 mL)). The organic layer was discarded, while the alkaline water layer was extracted 
three more times with CH2Cl2 (3 x 5 mL). The water layer was acidified with HCl (12 M, 4 
mL) and extracted with CH2Cl2 (4 x 5 mL). The organic layer was dried (MgSO4). Total yield 
was 0.5 mCi (10 % overall). The obtained product was purified by HPLC in order to remove a 
minor contamination (2-PBA; 3%). Analysis with LC/MS of the purified portion confirmed 
the correct mass and mass spectrum after comparison with commercial “cold” 3-PBA. 
 
Preparation of [14C] 3-PBA-glucuronide 
[14C] 3-PBA (43 microgram, 0.2 micromol, sp. act. 6 mCi/mmol) was dissolved in buffer (120 
mM Tris, 1% DMSO, 6 mM MgCl2, 1.2 mM UDP acetylglucosamine, 6 mM UDP glucuronic 
acid; 425 microliter). To this solution, a suspension of human liver microsomes (75 
microliter) was added. The suspension was incubated for 4 h at 37 ºC. Reversed phase HPLC 
analysis showed a conversion of ca 35% to a more polar compound. The formed 3-PBA 
glucuronide was purified by semi-preparative HPLC. HPLC analysis of a part of the purified 
reaction mixture showed a single radioactive peak, having the expected retention time 
(comparison with synthetic reference compound).  
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HPLC conditions: 
Buffer A: 5% CH3CN/H2O, 0.1 % TFA 
Buffer B: 80 % CH3CN, 0.1 % TFA 
 
Column: Alltech C18 (250 mm * 4.6 mm, 5 micron) 
HPLC system: Perkin Elmer 200 series 
Detector: Perkin Elmer UV detector, 200 series 
Radiomatic detector: Perkin Elmer Radiomatic flow scintillation analyzer 
Gradient: 
0-1 min 0% B 
1-4 min 0 to 50 % B 
4-19 min: 50 to 75 %B 
19-20 min: 75 to 100% B 
20-23 min: 100% B 
23-24 min: 100 to 0 % B 
24-27 min: 0 % B 
MS analysis confirmed the structure of the new formed compound as [14C] 3-PBA-
glucuronide (m/z 389 for native compound, 391 for 14C-labelled compound). Appropriate 
fractions were combined, lyophilized and incubated with human plasma (20 micromolar end 
concentration of glucuronide) for 2 h at 37 ºC. 
 
Preparation of 3-PBA-[14C] glucuronide 
To a lyophilized portion 3-PBA (43 microgram) was added a solution of [14C] UDP-
glucuronic acid (250 microliter, ethanol/water 7/3 v/v, 180 mCi/mmol, 5 microCurie). The 
solution was evaporated to dryness in a vacuum centrifuge. Buffer (120 mM Tris, 1% DMSO, 
6 mM MgCl2, 1.2 mM UDP acetylglucosamine; 425 microliter) and human liver microsomes 
(75 microliter) were added. The suspension was incubated for 4 h at 37 ºC. HPLC analysis 
showed a conversion of approximately 20 % to a compound with a similar retention time as 3-
PBA-glucuronide. This product was isolated using a Seppak C18 (classic) cartridge, because 
of the large difference in retention time of labeled UDP-glucuronic acid and 3-PBA 
glucuronide. The cartridge was conditioned with HPLC buffer B (3 mL) followed by HPLC 
buffer A (3 mL). The reaction mixture was diluted with water (1 mL) and applied to the 
Seppak cartridge, followed by 2 wash steps with buffer A (2 x 3 mL). Next, the 3-PBA-
[14C]glucuronide was eluted using buffer B (2 mL). The appropriate fraction was lyophilized 
and used for incubations with plasma.  
 
Incubation of [14C] labelled 3-PBA glucuronides with human plasma, sample work-up 
and quantitation of binding 
Incubation of [14C] labelled 3-PBA glucuronides with human plasma (20 micromolar end 
concentration of glucuronide) was performed for 2 h at 37 ºC. 
It was estimated that the protein content in plasma was 57 mg/mL. 
After the incubations of purified 3-PBA-glucuronides with plasma, it was attempted to 
separate bound from unbound 3-PBA-glucuronides. First, molecular weight cut-off filters (0.5 
mL) with a cut-off of 3 kD were used, which were washed with a solution of 20 % 
CH3CN/PBS. This method was very time consuming and the use of acetonitril probably 
caused clogging of protein material. Use of similar filters with a cut-off of 10 kD was more 
successful. Small plasma samples (0.2 mL) could be washed very frequently with PBS (18 x 1 
mL) at 4000g.  
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The PD-10 column was equilibrated with buffer (50 mM NH4HCO3, 25 mL). The sample was 
diluted to a volume of 2.5 mL with the same buffer and applied to the column. The column 
was eluted using 50 mM NH4HCO3 in 1 mL portions. From each fraction, 0.5 mL was used 
for liquid scintillation countings. Protein contents of PD-10 fractions were determined using a 
modified Lowry protocol (RC DC Protein Assay, BioRad). Protein material was usually 
present in fraction 3-8. 
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IV RESULTS AND DISCUSSION 
 
 
Adduct formation 3-PBA-glucuronide and Cl2CA-glucuronide 
Introduction 
Conjugation to glucuronic acid (“glucuronidation”) by UDP-glucuronosyltransferase- 
mediated transfer of a glucuronyl moiety of UDP-glucuronic acid to a nucleophilic site of a 
xenobiotic is one of the major Phase II detoxicification reactions. It renders  the xenobiotic 
more polar which facilitates its excretion. This reaction takes place predominantly in the liver. 
In case of glucuronidation of a carboxylic acid, potentially reactive electrophilic acyl 
glucuronides result that can react with nucleophilic residues within the organism. 
Two mechanisms of adduct formation by O-acyl glucuronides can be distinguished. 
According to the transacylation mechanism (Figure 3), nucleophilic sites in the proteins are 
acylated by the O-acyl glucuronide and consequently modified with the acyl moiety derived 
from the “original” metabolite. E.g., in case of the glucuronide of 3-PBA this should be a 3-
phenoxybenzoyl moiety (see Figure 4 for the chemical structure of the expected adducts). 
According to the glycation mechanism, an initial internal acyl migration occurs, followed by 
reaction with amino groups of the protein, leading to so-called Schiff base adducts (Grubb et 
al., 1993; Smith et al., 1990), which may eventually undergo a (slow) Amadori rearrangement 
(see Figure 5). However, the latter rearrangement has not been experimentally confirmed. In 
case of the glucuronide of 3-PBA and Cl2CA the expected Schiff-adduct will have the 
chemical structure as shown in Figure 4. 
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Figure 3. Adduct formation by acyl glucuronides according to the transacylation mechanism. 
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Figure 4. Structure of expected lysine-adducts of permethrin-derived O-acyl glucuronides, 
according to the transacylation mechanism (left) and to the glycation mechanism (middle). 
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Figure 5.  Adduct formation by acyl glucuronides via the glycation mechanism 
                       
 
  
In the first year of the agreement, the following results were obtained: 

1. The reaction of 3-PBA glucuronide with glutathione has been shown to result in an 
(unstable) S-acylated adduct. 

2. The reaction of 3-PBA glucuronide with model compounds has been shown to result 
in the formation of both adducts formed by transacylation, as well as adducts formed 
by the glycation mechanism. 

3. For Cl2CA glucuronide, only adducts with glutathione could be detected, derived 
from transacylation. No adducts could be observed after incubation of Cl2CA 
glucuronide with amino-containing model compounds 

4. Preliminary experiments with human plasma have been carried out. After incubation 
of 3-PBA glucuronide with human plasma, followed by sample work-up, two peptide 
adducts could be detected that were derived from albumin. 

 
  
Incubations of 3-PBA and Cl2CA β-glucuronides with human plasma, followed by 
enzymatic digestion  
After trypsin digestion of the albumin from the 3-PBA-glucuronide exposed plasma, no 
ASSAKQR adducts could be detected. In the trypsin digest of plasma, incubated with 3-PBA-
glucuronide, the fragment LK*ZASLQK with K* lysine modified according to the glycation 
mechanism was identified by LC-MS/MS. In case of exposure of plasma to Cl2CA 
glucuronide, none of these peptides were found in the trypsin digest of albumin. 
In addition to trypsin digestion, pronase digestion of albumin was explored. Advantage of 
pronase is that when modification of lysine is pronounced and quite random, the level of 
modified lysine in the digest will be much larger than the level of one specifically modified 
peptide fragment in the trypsin digest. First, the pronase digest of albumin was analyzed for 
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the presence of modified (acylated or glycated) Cys*-Pro-Phe, after exposure of plasma to 3-
PBA glucuronide or Cl2CA glucuronide. Probably, the adduct (a thioester or thioether) is too 
unstable to survive the incubation with pronase.  
Next,  the pronase digests were analyzed for modified lysine. In case of exposure to 3-PBA 
glucuronide (0.5 mM – 5 mM) peaks with MH+ 343.1 or MH+ 519.1 were found in all 
samples, corresponding to a lysine derivative resulting from transacylation or glycation, 
respectively. The structures of the lysine adducts were confirmed with LC-MS-MS. The 
adduct resulting from glycation was more intense than the peak resulting from transacylation 
(see Figure 6 for ion chromatogram and Figure 7 for tandem MS spectrum. Similar results 
were found in the pronase digests of plasma incubated with Cl2CA glucuronide (4.6 mM). 
Peaks with MH+ 337.1 and 512 (broad peak) correspond to the modified lysine derivatives. In 
case of the transacylation adduct, LC-MS showed two peaks for the individual isomers (see 
Figure 8); see Figure 9 for comparison of mass spectra of synthetic lysine derivative and of 
the adduct present in the digest. Interestingly, for Cl2CA glucuronide the adduct resulting 
from transacylation was the more intense adduct, which is in contrast to the results obtained 
for 3-PBA glucuronide. 
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Figure 6. Ion chromatograms for 3-PBA-modified lysine (glycation adduct) in a pronase 
digest of albumin isolated from human plasma that was incubated with 3-PBA glucuronide. 
Upper trace, blank; middle trace, 1 mM exposure; 5 mM exposure. 
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Figure 7. Tandem mass spectra of 3-PBA-lysine adduct (glycation) in a pronase digest of 
albumin isolated from human plasma that was incubated with 3-PBA glucuronide. 
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Figure 8. Ion chromatograms for Cl2CA-modified lysine (transacylation adduct, both 
isomers) in a pronase digest of albumin isolated from human plasma that was incubated with 
synthetic Cl2CA glucuronide. Upper trace, synthetic reference compounds; middle trace, 
blank plasma; exposed plasma. 
 



 25

monster 0649BO15 (4.65 mM)
11:26:19

15-MAR-2007

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440
m/z0

100

%

0

100

%

o0649bo15d  782 (34.278) Sm (Mn, 1x1.00); Cm (780:784-772:777) 1: TOF MSMS 337.10ES+ 
4.65e3191.0

84.1

147.1

130.1
127.0

85.1 95.1
163.0148.1

165.0

274.1
193.0

194.0

337.1276.1

291.1
277.1

293.1

339.1

340.1

o0649bo15d  809 (35.458) Sm (Mn, 1x1.00); Cm (808:812-815:820) 1: TOF MSMS 337.10ES+ 
4.18e3147.1

84.1

130.1

129.1

191.0

148.1
163.0

337.1

193.0

274.1
276.1

291.1 293.1

339.1

340.1

 
 
Figure 9. Tandem mass spectra of Cl2CA-lysine adduct in a pronase digest of albumin 
isolated from human plasma that was incubated with Cl2CA glucuronide. Upper trace: fast 
eluting isomer. Lower trace: slow eluting isomer (see Figure 8). 
 
Care had to be taken with the results obtained with synthetic Cl2CA glucuronide because a 
mixture of α/β-glucuronide was used. In order to ascertain that it was indeed the in vivo 
formed β-glucuronide was responsible for the adduct formation, we decided also to perform 
plasma incubations with β-glucuronide that had been prepared enzymatically, i.e., with liver 
microsomes and UDP-glucuronic acid. For this, the procedure published by Bolze et al (2002) 
was used. Plasma was exposed to the crude Cl2CA-glucuronide, albumin was isolated and 
digested with pronase. The presence of the Cl2CA-lysine adduct could be confirmed, although 
only one isomer of the adducts was visible, which is in contrast to the case when synthetic 
Cl2CA-glucuronide was used (see Figure 10).  
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Figure 10. Ion chromatograms for Cl2CA-modified lysine (transacylation adduct) in a 
pronase digest of albumin isolated from human plasma that was incubated with Cl2CA 
glucuronide, that was obtained through enzymatic synthesis. Upper trace, blank plasma; lower 
trace, exposed plasma. Peak at 34.5 min is peak of interest. 
 
This might be explained by the fact that during biosynthesis of the Cl2CA-glucuronide the 
various Cl2CA isomers can display different reactivity, resulting in a different ratio of β-
glucuronides and probably also in a different ratio of lysine adducts. Only the lysine adduct 
resulting from transacylation could be observed; this adduct was also the most pronounced 
adduct when synthetic Cl2CA glucuronide was used. The β- glucuronide of 3-PBA was also 
prepared enzymatically. In this case, only the glycation adduct could be observed upon 
exposure of plasma to the crude glucuronide (see Figure 11). 
For reference purposes, the lysine adducts of 3-PBA- and Cl2CA glucuronide formed by 
transacylation, were prepared by using a solid phase peptide synthesis protocol, starting with 
immobilized Boc-Lys(ε-NH-Fmoc) ; see Figure 12. The compounds displayed identical mass 
spectrometric properties and retention times as the lysine adducts in the pronase digests. The 
adducts resulting from the glycation pathway are, in this stage of the study, too complex to 
synthesize. 
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Figure 11. Ion chromatograms for 3-PBA modified lysine (glycation adduct) in a pronase 
digest of albumin isolated from human plasma that was incubated with 3-PBA glucuronide, 
that was obtained through enzymatic synthesis. Upper trace, blank plasma; lower trace, 
exposed plasma. Peak at 29.5 min is peak of interest. 
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Figure 12. Synthesis scheme for lysine adducts of 3-PBA and Cl2CA 
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Synthesis of [14C] 3-PBA and enzymatic synthesis of [14C] 3-PBA glucuronide 
The synthesis of [14C] 3-PBA was performed by using a Grignard reaction with carbon 
dioxide in order to introduce the [14C] label, basically according to Elliott et al (1976). The 
synthetic route was first performed by using unlabelled compounds. The synthesis of the 
labeled material proceeded smoothly and the product displayed similar characteristics as 
reference 3-PBA (see Figures 13 and 14). 
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Figure 13. Mass spectrometric analysis of synthetic [14C] 3-PBA. Upper trace: total ion 
current. Lower trace: mass spectrum, showing the isotope ratio of labeled and unlabeled 
product. 
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Figure 14. Comparison of commercially available reference standard 3-PBA (upper trace) 
and  [14C] 3-PBA (sp act 6 mCi/mmol), as prepared at TNO. 
 
The enzymatic synthesis of the β-glucuronides was performed according to a literature 
procedure (Bolze et al., 2002). See Figure 15 for HPLC analysis (radiometric detection) of the 
crude incubation mixture. The glucuronide was purified by means of reversed phase HPLC. A 
small part of the purified material was used for thorough mass spectrometric analysis. The ion 
chromatogram of the isolated product is shown in Figure 16, with the respective mass spectra 
shown in Figure 17. As was also reported by Bolze et al (2002), the glucuronides rapidly 
isomerize and consequently various peaks with comparable mass spectra are observed. The 
mixture as such was used for incubation with plasma.  
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Figure 15. HPLC analysis of biosynthesis incubation mixture for synthesis of [14C] 3-PBA 
glucuronide from [14C] 3-PBA after 4 h at 37°C. The peak at 20 min represents 3-PBA, the 
peak at ca 12 min the glucuronide, as was confirmed by mass spectrometry. 
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Figure 16. Ion chromatogram of [14C] 3-PBA glucuronide isomers obtained after enzymatic 
synthesis, after purification by reversed phase HPLC. 
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Figure 17. Mass spectra of isomeric [14C] 3-PBA glucuronides obtained after enzymatic 
synthesis. 
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Quantitation of binding of [14C] 3-PBA glucuronide in human plasma 
 
The [14C] labelled 3-PBA glucuronides were incubated with plasma for 2 h at 37 ºC. The 
plasma was subsequently separated into low molecular and high molecular weight material.  
Part of the filtrate (Figure 18) and the retentate (Figure 19) of the 10 kD molecular weight 
cut-off filter were applied to a PD-10 desalting column. The same experiment was applied to 
plasma exposed to [14C] 3-PBA glucuronide (see Figure 20; 20 micromolar exposure level). 
Fractions of 1 mL were collected and analyzed for radioactivity. It was obvious that 
radioactivity in the retentate fractions coeluted with high molecular material, whereas the 
radioactivity in the filtrate fractions could be detected in low-molecular weight fractions. A 
plasma sample applied to a PD-10 column showed radioactivity in both high molecular as low 
molecular weight fractions. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.  Radioactivity pattern after elution of a 10 kD-filtrate of a plasma sample, exposed 
to [14C] 3-PBA-glucuronide (20 micromolar), on a PD-10 column. 
.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 19. Radioactivity pattern after elution of a 10 kD retentate of a plasma sample exposed 
to [14C] 3-PBA-glucuronide (20 micromolar), on a PD-10 column. 
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Figure 20. Radioactivity  pattern (blue line) after elution of plasma (135 microliter), exposed 
to 20 micromolar [14C] 3-PBA-glucuronide, on a PD-10 column. The pink line indicates the 
amount of protein. 

 
 
 
 
 
 
 
 
 
 
 

Figure 21.  Radioactivity pattern after elution of a plasma sample, exposed to  [14C] 3-PBA-
glucuronide (20 micromolar) (blue line), on a PD-10 column. The protein containing fractions 
(3-8) were reapplied to a PD-10 column (pink line), and after elution radioactivity was 
determined. 
 
One can envisage that 3-PBA and derivatives thereof can also interact with proteins in a non-
covalent way. In order to circumvent this issue, the protein-containing fractions were re-
eluted over a PD-10 column (see Figure 21). Indeed, part of the radioactivity now eluted in 
the low-molecular weight fractions. Therefore, further quantitation of binding will be studied 
more careful, e.g. by extensively washing the plasma retentates on a 10 kD molecular weight 
cut-off filter with 6 M guanidine buffer, followed by a final PD-10 column of the retentate (in 
PBS), in order to get rid of all non-covalently bound material. 
 
In conclusion, the reaction of the permethrin-derived β-glucuronides of 3-PBA and Cl2CA 
with model peptide compounds has been shown to result in the formation of both ε-N-lysinyl 
adducts formed by transacylation, as well as ε-N-lysinyl adducts formed by the glycation 
mechanism. When incubation experiments with human plasma were carried out, adduct 
formation could be observed with albumin after mass spectrometric analysis of trypsin and 
pronase digests of albumin. Pronase digestion of albumin isolated from exposed plasma 
samples resulted in the formation of the various  individual ε-NH2-modified lysine 
derivatives, which can be analyzed conveniently by mass spectrometry. These adducts had 
favourable chromatographic and mass spectrometric properties.  
In future work, the quantitation of adduct formation will be studied in more detail and animal 
experiments will be carried out in order to see whether adduct formation also occurs in vivo at 
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detectable levels. For this, the mass spectrometric method used for analysis of the lysine 
adduct will be further optimized. In addition, the issue of toxicological relevance of protein 
binding by these metabolites will be addressed in more detail. As a first step towards this, 
liver homogenates will be exposed to radioactively labeled glucuronides of 3-PBA, protein 
binding will be quantified and it will be investigated whether there are specific proteins to 
which these glucuronides bind. 
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V KEY RESEARCH ACCOMPLISHMENTS OBTAINED IN THIS GRANT PERIOD 
 
1. A method was developed for enzymatic synthesis of 3-PBA glucuronide and Cl2CA 

glucuronide. 
2. The enzymatically obtained glucuronides of 3-PBA and Cl2CA gave also rise to 

adduct formation with proteins. 
3. A method was developed for release and subsequent mass spectrometric analysis of 

adducts of 3-PBA glucuronide and Cl2CA glucuronide to lysine residues in proteins. 
4. The synthesis of lysine adducts of 3-PBA and Cl2CA glucuronide, resulting from the 

transacylation mechanism, has been accomplished. These compounds can be used as 
reference compounds for the planned animal experiments and for eventual 
biomonitoring purposes. 

5. The synthesis of [14C] labelled 3-PBA has been accomplished. 
6. The synthesis of [14C] labelled 3-PBA glucuronides, either with the radioactive label 

in the 3-PBA moiety or in the glucuronide  moiety, has been accomplished. 
7. Quantitation of binding of [14C] labelled 3-PBA glucuronide to plasma proteins has 

been undertaken. The binding studies were significantly thwarted by apparently 
strong non-covalent interactions of the 3-PBA derivatives with proteins. 
Consequently, this issue will be studied in more detail in the next grant period. 
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Publications 
Biomonitoring of exposure to permethrin based on adducts to proteins 
D. Noort, A. van Zuylen, A. Fidder and A.G. Hulst 
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chemical hazards. Toxicology, diagnosis, and medical countermeasures’ 
NATO-RTO, in press 
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Natick, MA, USA, October 2005 
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Presented by D. Noort 
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23rd International Neurotoxicology Conference 
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VII CONCLUSIONS 
 

1. The reaction of the permethrin-derived β-glucuronides of 3-PBA and Cl2CA with 
proteins has been shown to result in the formation of both ε-N-lysinyl adducts formed 
by transacylation, as well as ε-N-lysinyl adducts formed by the glycation mechanism.  

2. When incubation experiments with human plasma were carried out, adduct formation 
could be observed with albumin after mass spectrometric analysis of trypsin and 
pronase digests of albumin. This was the case for glucuronides prepared either by 
organic synthesis or by enzymatic biosynthesis. 

3. Pronase digestion of albumin isolated from exposed plasma samples resulted in the 
formation of the various  individual ε-NH2-modified lysine derivatives, which can be 
analyzed conveniently by mass spectrometry. These adducts had favourable 
chromatographic and mass spectrometric properties.  

4. Protein binding studies were thwarted by non-covalent interactions with 
(radioactively labeled) 3-PBA glucuronide or derivatives thereof; consequently, no 
exact data can yet be provided with regard to the degree of covalent protein binding. 

5. With regard to the protein binding by the various glucuronide metabolites of 
permethrin, further research on the toxicological significance of this phenomenon is 
warranted. 
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